Skip to main content
Log in

Biochemical characterization of developmental stages of cycad somatic embryos

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The effect of two light intensities (25 μmol m−2s−1 and 50 μmol m−2s−1) on four developmental stages ofCeratozamia mexicana somatic embryos growing on semisolid plant growth medium at 25°C was measured. Growth parameters included fresh weight, morphology, and invertase and peroxidase activity. Under low light conditions, fresh weight was greater in stages 1 and 2 than in stages 3 and 4. In addition, there was a high frequency of hyperhydricity and polyembryogenesis in stages 1 and 2, whereas stages 3 and 4 were nonhyperhydric and unbranched. Stages 2–4 were green. Under high light conditions, embryos had lower fresh weights and less hyperhydricity, and stages 2–4 were green. Under low light conditions, peroxidase activity was less, although stage 1 embryos under both light conditions showed the highest activity. Stage 1 embryos required three to four months to develop to stage 2 under high light conditions and two to three months under low light conditions. Invertase activity under low light conditions was minimal in stage 2. All embryos had low invertase activity under high light intensity, and stages 2–4 had high levels of glucose. Embryo development from stage 2 to the next and for each subsequent stage under high light conditions required three to four months, and under low light conditions required four to five months. Higher light intensity therefore promotes the speedy recovery of plants.

Resumen

El efecto de dos intensidades de luz (25 μmol m−2s−1 y 50 μmol m−2s−1) fue registrado en cuatro estados de desarrollo de embriones somáticos deCeratozamia mexicana cultivados en medio semisólido, 25°C. Los parámétras de crecimiento incluyeron peso fresco, peso seco, morfología, y actividad peroxidasa e invertasa. Bajo condiciones de baja iluminación, el peso fresco de los estados 1 y 2 fue mayor que en los estados 3 y 4. Además, hubo una alta frecuencia de hiperhidratación y poliembriogénesis en estados 1 y 2, mientras que los estados 3 y 4 no resultaron hiperhidratados ni ramificados. Los estados 2–4 fueron verdes. Bajo alta iluminación, los embriones tuvieron un menor peso fresco y menos hiperhidratación. En baja iluminación la actividad peroxidasa fue menor, aunque en los embriones en estado 1 en ambas condiciones de iluminación mostraron la más alta actividad. Los embriones en estado 1 requirieron tres o cuatro meses para desarrollarse hasta el estado 2 bajo condiciones de alta iluminación; y dos o tres meses en baja iluminación. La actividad invertasa en condiciones de baja iluminación fue minima en el estado 2. Todos los embriones tuvieron altos nivelés de glucosa. El desarrollo de los embriones de estado 2 al siguiente y a los subsecuentes, bajo alta iluminación, requirió tres o cuatro meses, y bajo condiciones de baja iluminación requirió cuatro o cinco meses. Una alta intensidad luminosa parece promover la velocidad de recuperación de plantas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Booij, I., S. Monfort &J. J. Macheix. 1993. Relationships between peroxidases and budding in date palm tissues culturedin vitro. Pl. Cell Tissue Organ Cult. 35: 165–171.

    Article  CAS  Google Scholar 

  • Borkowska, B. &M. Kubik. 1990. Utilization and accumulation of14C-sucrose in sour cherry shoots rootedin vitro. Sci. Hort. 44: 261–267.

    Article  CAS  Google Scholar 

  • — &M. Opilowska. 1988. Influence of BA and other cytokinins on proliferation and metabolic status of sour cherry cultures cultivatedin vitro. Fruit Sci. Rep. 15(4): 147–156.

    CAS  Google Scholar 

  • — &J. Szczerba. 1991. Influence of different carbon sources on invertase activity and growth of sour cherry (Prunus cerasus L.) shoot cultures. J. Exp. Bot. 42: 911–915.

    Article  CAS  Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Ann. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  • Chávez, V. M., R. E. Litz &K. Norstog. 1992a. In vitro morphogenesis ofCeratozamia hildae andC. mexicana from megagametophytes and zygotic embryos. Pl. Cell Tiss. Org. Cult. 30: 93–98.

    Article  Google Scholar 

  • ——,P. A. Moon &K. Norstog. 1992b. Somatic embryogenesis from leaf callus of a mature gymnospermCeratozamia mexicana var.robusta (Miq.) Dyer (Cycadales). In Vitro Cell. Devel. Biol. 28P: 59–63.

    Google Scholar 

  • Gamborg, O. L., R. A. Miller &K. Ojima. 1968. Plant cell cultures, I. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, T., C. Penel, F. J. Castillo &H. Greppin. 1985. A two-step control of basic and acidic peroxidases and its significance for growth and development. Physiol. Pl. 64: 418–423.

    Article  CAS  Google Scholar 

  • Howard, H. F. &F. H. Witham. 1983. Invertase activity and the kinetin-stimulated enlargement of detached radish cotyledons. Pl. Physiol. 73: 304–308.

    CAS  Google Scholar 

  • MacAdam, J. W., R. Sharp &C. J. Nelson. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Pl. Physiol. 99: 879–885.

    Article  CAS  Google Scholar 

  • McDougall, G. J. 1992. Changes in cell wall-associated peroxidases during the lignification of flax fibres. Phytochemistry 31: 3385–3389.

    Article  CAS  Google Scholar 

  • Murashige, T. &F. Skoog. 1962 A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Pl. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375–380.

    CAS  Google Scholar 

  • Preece, J. E. &E. G. Sutter. 1991. Acclimatization of micropropagated plants to the greenhouse and field. Pp. 23–33in P. C. Debergh & R. H. Zimmerman (eds.), Micropropagation: Technology and application. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Salame, N. &N. Zieslin. 1994. Peroxidase activity in leaves ofSyngonium podophyllum following transition fromin vitro toex vitro conditions. Biol. Pl. 36(4): 619–622.

    Article  CAS  Google Scholar 

  • Sánchez, M., G. Revilla &I. Zarra. 1995. Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann. Bot. 75: 415–419.

    Article  Google Scholar 

  • Van Huylenbroeck, J. M. &P. C. Debergh. 1996. Impact of sugar concentrationin vitro on photosynthesis and carbon metabolism duringex vitro acclimatization ofSpathiphyllum plantlets. Physiol. Pl. 96: 298–304.

    Article  Google Scholar 

  • Webb, D. T. 1983. Developmental anatomy of light-induced root nodulation byZamia pumila L. seedlings in sterile culture. Amer. J. Bot. 70(8): 1109–1117.

    Article  Google Scholar 

  • —. 1984. Developmental anatomy and histochemistry of light-induced callus formation byDioon edule (Zamiaceae) seedling rootsin vitro. Amer. J. Bot. 71(1): 65–68.

    Article  Google Scholar 

  • Ziv, M. 1991. Vitrification: Morphological and physiological disorders ofin vitro plants. Pp.in P. C. Debergh & R. H. Zimmerman (eds.), Micropropagation: Technology and application. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargas-Luna, I., Ortiz-Montiel, G., Chávez, V.M. et al. Biochemical characterization of developmental stages of cycad somatic embryos. Bot. Rev 70, 54–62 (2004). https://doi.org/10.1663/0006-8101(2004)070[0054:BCODSO]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2004)070[0054:BCODSO]2.0.CO;2

Keywords

Navigation